
Breast cancer is the leading cause of cancer death in 
women worldwide (1). Since life expectancy largely 
depends on the stage of the cancer at the time of di-
agnosis, screening programs have been introduced for 
detecting breast cancer as early as possible. Currently 
screening programs are performed with mammog-
raphy. Although benefits of mammography based 
screening have been shown, it has low sensitivity in 
dense breasts (2). Digital breast tomosynthesis (DBT) 
is partly effective in solving this problem. Breast MRI 
is much more effective in dense breasts; but it is used 
only for women with increased breast cancer risk as a 
screening modality.
Radiologic images are data, not just pictures. It is ob-
vious that various data processing algorithms can be 
used to evaluate radiological images. Computer aid-
ed detection (CAD) systems were developed in the 
early 1990s to increase breast cancer detection with 
mammography. These systems were programs where 
distinctive features were defined by radiologists, and 
these differential features were taught to computers by 
programmers.
The imaging information obtained in breast MRI and 
DBT examinations has a high dimensional and multi-
parametric nature, which makes reading of these imag-
es a difficult and time consuming task for radiologists. 
Currently, several automated tools, based on computer 
vision and machine learning (ML) techniques, are be-
ing developed in order to increase reading efficiency 
and accuracy of the radiologists. 
Since 2012, we have been witnessing rapid and rev-
olutionary changes in the fields of ML, computer vi-
sion; and consequently, medical image analysis with 
the advent of the algorithms named as ‘deep learn-
ing’. These fields changed literally overnight when the 
2012 ILSVRC ImageNet challenge was won by a Deep 
Convolutional Networks (CNN) algorithm (3). Deep 
learning methods have been improved further with 
explosively increasing number of studies since 2012, 
being the method of choice in automated image anal-
ysis. A deep learning architecture known as CNN has 
become dominant for processing images. The success 
of deep learning with CNNs for images in nonmedi-

cal fields has increased hopes for and research towards 
analysis of medical images. Although neural networks 
have been used for decades, in recent years three key 
factors have enabled the training of large neural net-
works: (a) the availability of large quantities of labeled 
data, (b) inexpensive and powerful parallel computing 
hardware, and (c) improvements in training techniques 
and architectures. CNNs of increasing depth and com-
plexity have gained significant attention since 2012. 
An important advantage of deep learning is that it does 
not require image feature identification and calculation 
as a first step; rather, features are identified as part of 
the learning process. Deep learning systems learn the 
distinctive features from the labeled data themselves. 
Therefore, a large number of correctly labeled data is 
needed (Fig. 1).
Artificial Intelligence (AI) is the most popular topic 
nowadays in all disciplines of science. Medical imag-
ing is the most rapidly rising area of health innovation 
with AI. Not more than 10 years ago, the total number 
of publications on AI in radiology only just exceeded 
100 per year. Currently, publications about AI in ra-
diology have increased from 100-150 per year to 700-
800 per year.

Mammography and Digital Breast 
Tomosynthesis
United States Food and Drug Administration (FDA) 
approved mammography CAD systems for breast can-
cer detection in 1998, and reimbrusement for mam-
mography CAD has began in 2002. Early CAD systems 
were actually supervised ML systems, and they favored 
sensitivity over specificity. They were widely used in 
US because of medicolegal worries, but not in the rest 
of the world.
CAD systems were introduced as an aid for radiolo-
gists, trying to improve their performance for detec-
tion and diagnosis. It is important to minimize misses 
and interpretation errors of visible lesions at digital 
mammography, which contribute to at least 25% of de-
tectable cancers being missed (4). The benefit of using 
CAD in breast cancer screening is still unclear. Most 
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evidence shows no clear improvement in the cost-ef-
fectiveness of screening, mainly because of the low 
specificity of most traditional CAD systems (5). They 
prompt marks on true positive, but also many false 
positive areas on mammograms. However, substantial 
improvements in AI with deep CNNs are reducing the 
difference in performance between humans and com-
puters in many medical imaging applications, includ-
ing breast cancer detection (6). Therefore, this new 
generation of deep learning–based CAD systems may 
finally allow for an improvement in the performance of 
breast cancer screening programs (7). 
Mammography AI systems show high-risk areas on 
mammography with different visual aids. Some show 
classic CAD marks on a mammogram for calcifications 
and soft tissue lesions, with a quantitative indication of 
the risk, while others only visualize the risk in the form 
of a temperature map without distinguishing features 
(Fig. 2). 
Apart from the evolution of AI algorithms, the aid that 
the AI system provides can also help improve screen-
ing. Studies have shown that, using CAD concurrently 
as a decision support tool helps radiologists more than 
does the traditional approach (8). Diagnostic perfor-
mance of breast radiologists were higher with support 
from an AI system compared with reading unaided. 
The average reading times per case were similar under 
both conditions (Fig. 3) (9). 
Transfer learning is a ML method, that focuses on stor-
ing the information obtained while solving a problem, 
and then applying it to a different but related problem. 
For example, the information obtained while learning 

to recognize cars can be applied when trying to recog-
nize trucks. AI programs to be developed for reading 
DBT will use the knowledge of AI programs developed 
for reading mammography. By means of transfer learn-
ing, the training of AI systems will be faster and more 
accurate, and will require less labeled data (13). Due to 
this knowledge transfer, AI programs that read DBT 
will be available in daily practice earlier than expected. 
With the spread of successful AI programs in reading 
DBT, tomo only breast cancer screening will probably 
be accelerated (Fig. 4).
DBT is a three dimensional (3D) imaging technique 
that has been shown to increase breast cancer-detec-
tion rates and reduce false positive results as compared 
with digital mammography (2D) alone (10, 11). The su-
perimposition of tissues in 2D digital mammography 
has contributed to false positives. DBT reduces over-
lapping opacities, and thus increases lesion conspicuity 
while reducing recall rates. Recent studies have found 
that DBT is particularly beneficial in the detection of 
masses in women with increased breast density or het-
erogeneously dense breasts. A relative disadvantage is 
that, DBT increases reading times from 50 to 200 % 
due to the increased number of images (12). There is 
a need for optimized CAD and diagnosis systems for 
DBT in order to reduce radiologist evaluation time and 
improve efficiency. With the trend of increasing use of 
DBT, developers of AI-CAD systems have taken this 
emerging imaging technique into consideration. In 
March 2020, FDA approved the Screenpoint’s software 
called Transpara in reading DBT. This artificial intelli-
gence software has been shown to reduce reading time 
by 35 seconds per case while increasing radiologist ac-

Fig. 1: A lot of accurate labeled data is required in order to train AI systems with deep learning
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Fig. 2: A) AI program trained with deep learning for reading 
mammography. It shows a CAD mark on a suspicious area to-
gether with its risk score B) Same patient, Another AI program, 
trained with deep learning, shows its findings in the form of a 
head map.

Fig. 3: An AI mammography system where the workflow works as a decision support system.  A) System shows only risk 
score (Transpara score 1-10, 1 is the lowest, and 10 is the highest risk score) B) If the radiologist clicks on the area he sus-
pects on the mammogram, artificial intelligence shows him the risk score on the mammography in that area and counter 
projection, if any. C) If the radiologist clicks on the microcalcification CAD marker (rhombus), the artificial intelligence 
shows the suspicious microcalcification areas found on the mammography with the risk score. D) If the radiologist clicks 
on the mass CAD marker (circle), the artificial intelligence shows the areas of suspicious mass found on mammography 
together with the risk score.
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curacy in reading DBT (Fig. 5) (https://bit.ly/3eE2Vsw, 
inpress). 
Deep learning-based CAD softwares can correlate 
MLO and CC views when abnormalities are visible in 

both views, just as radiologists do. Major limitations 
of CAD systems are that, they cannot compare old and 
news images (temporal comparison), and most CAD 
systems cannot compare right and left breast images 

Fig. 4: Transfer learning: Artificial intelligence systems that read tomosynthesis can be trained in a shorter time with less 
labeled cases, using knowledge from mammography reading training.

Fig. 5: A and B) The artificial intelligence system links findings between CC and MLO. With one click the viewer can bring 
up slices in CC and MLO of the same lesion (upper row synthetic mammographies).
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(symmetry comparison). They examine high resolu-
tion mammography images like a patch work. They 
don’t look at a mammogram as a whole picture. In the 
near future, further development of deep learning al-
gorithms and hardwares will overcome these obstacles. 
Thus, AI-based CAD systems will become even better 
decision support systems, reaching a performance sim-
ilar to or better than that of radiologists for breast can-
cer detection in mammography.
Another application of AI in mammography and DBT 
is worklist prioritization. It can prioritize cases with 
suspicious findings in the worklist, thus increasing ef-
ficiency of radiologists and allowing fast evaluation of 
cancer cases. 

Breast Ultrasound
Breast ultrasound (US) can provide additional infor-
mation to further characterize mammographic find-
ings or palpable abnormalities, and to guide inter-
ventional procedures. In particular, US can increase 
detection of early breast cancer when used as a sup-
plementary imaging technique in women with dense 
breasts. Automated breast ultrasound (ABUS) has been 
developed to overcome the limitations of inter-opera-
tor variability with handheld ultrasound (HHUS) and 
is able to generate thousands of 2D US images to ob-
tain a 3D representation of the breast tissue. The CAD 
system for ABUS has been shown to decrease reading 
times without compromising diagnostic accuracy, with 
CAD-ABUS averaging a reading time of 113.4 seconds 
per case compared to 158.3 seconds per case using 
ABUS alone (14). The system is able to automatically 
extract features from suspicious areas of breast tissue 
that are larger than or equal to a diameter of 5 mm, 
finally generating a score of suspiciousness for each 
area. The CAD output includes the CAD Navigator 
image, which is displayed simultaneously with the 
original ABUS and acts as a roadmap for navigation, 
as well as CAD marks (coloured circles) for potentially 
malignant lesions. Cloud based AI programs for breast 
US can be integrated into PACS and used as a decision 
support system (15). FDA approved AI-based decision 
support systems for breast US are now commercial 
products.

Breast Magnetic Resonance Imaging
Breast magnetic resonance imaging (MRI) is known 
for its high sensitivity in detecting breast lesions. It has 
been shown that lesions that are occult in mammogra-
phy and US can be detected in breast MRI (16). Despite 
the higher sensitivity of breast MRI, mammography 
remains as the standard modality for general screening 
of women for breast cancer, since high cost of breast 
MRI limits its widespread use. One of the cost-increas-
ing factors is the acquisition of several sequences for a 
single breast MRI study. In a typical breast MRI acqui-
sition protocol, after an initial T1-weighted (T1w) MRI 
scan is obtained, a contrast agent is administered to the 
patient to enhance lesions, and, subsequently, several 
post-contrast T1w MRI scans are obtained. CAD eval-

uation mostly relies on contrast media uptake dynam-
ics. To decrease the cost and be able to facilitate the 
application of this imaging modality in screening, ab-
breviated breast MRI protocols have been introduced 
(17).
Performance of CAD systems in breast MRI mainly 
rely on dynamic features, whereas, in clinical assess-
ment, morphology is the most vital information and 
dynamic information is auxiliary. Automatic evalu-
ation of lesion morphology in a conventional CAD 
system is difficult, since it requires specific features to 
be extracted from images. Furthermore, differentiation 
of such features is known to be the most difficult part 
and main performance limiting factor of conventional 
computer vision systems. Recently popular deep learn-
ing methods tackle this difficulty by learning such fea-
tures automatically based on examples, instead of using 
human-engineered features, often using CNNs (18). 
Also new AI-based CAD systems use symmetry infor-
mation in breast MRI arising from the differences be-
tween the contrast enhancements of the two breasts, in 
addition to the 3D morphological information in the 
candidate regions. This is important because asymme-
try is an important finding in breast MRI, and it is one 
of the features stated in the guidelines for evaluation of 
breast MRI scans (19).
With the recent improvements in MR technology, nov-
el ultrafast DCE-MRI sequences allow monitoring of 
the initial uptake of contrast agent, instead of imaging 
washout at the late phase. The high dimensional and 
multi-parametric nature of the information currently 
obtained in breast MRI makes interpretation still more 
complex and labor-intensive. Moreover, inter-observ-
er variations are common. The use of CAD systems 
may improve diagnostic accuracy by decreasing in-
ter-observer variations, providing support for clinical 
decisions and reducing the number of false-positive 
biopsies (20). It has been shown that, classification of 
benign and malignant breast lesions imaged with a 
multi-parametric ultrafast DCE-MRI protocol using 
AI techniques is at least as accurate as dedicated breast 
radiologists (21). 

Conclusion
AI will surely impact radiology, and more quick-
ly than other medical fields. It will change radiology 
practice more than anything since the discovery of 
x-ray by Wilhelm Roentgen. Unprecedented success 
of deep learning in image recognition has revived the 
optimism in automating image interpretation tasks 
at the performance level of humans. Only in the last 
few years, have we seen applications in various do-
mains that reach or even surpass human performance 
at certain image recognition tasks, such as breast im-
aging (21,22). Consequently, there have been discus-
sions about the feasibility of replacing human labor 
with deep learning based AI in various fields includ-
ing radiology. However, in order to avoid far-fetched 
expectations, it is important to understand the limita-
tions of these AI systems. ML systems, including deep 
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learning, are specialized in solving isolated tasks, while 
human intelligence is able to develop understanding of 
various concepts and is able to combine vast amount 
of information from different levels and domains for 
performing tasks.
A malfunctioning AI system may have the opposite 
of its intended positive effect; a failing system can cre-
ate new safety hazards. It should not be assumed that 
the worst-case failure of a system that includes AI is 
equivalent to the function of that system without AI. 
For instance, using AI for mammography worklist pri-
oritization is generally considered low risk because the 
current state for most practices is effectively random 
prioritization. However, the worst-case failure for AI 
prioritization is not random, but reversed prioritiza-
tion. Adding AI introduces new possibilities for failure. 
An AI system is only as good as its inputs. The accuracy 
of inputs to AI systems is equally important as the AI’s 
accuracy in interpreting those inputs. Many findings 
that radiologists easily label as artifacts in their daily 
routines may be the source of misinterpretation for AI 
systems reading mammography. 
Radiologists, who are the most open medical group to 
technological developments, will include AI applica-
tions in their practice. In the near future, AI systems 
will probably become an integral part of breast imag-
ing. Breast radiologists should learn all aspects of AI 
applications in breast imaging, and should be able to 
incorporate them into their practices. Breast clinicians 
should also be aware of the benefits and shortcomings 
of this new technology.
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